On some estimates involving the number of prime divisors of an integer

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Residue Class Distribution of the Number of Prime Divisors of an Integer

The Liouville function is defined by λ(n) := (−1)Ω(n) where Ω(n) is the number of prime divisors of n counting multiplicity. Let ζm := e2πi/m be a primitive m–th root of unity. As a generalization of Liouville’s function, we study the functions λm,k(n) := ζ kΩ(n) m . Using properties of these functions, we give a weak equidistribution result for Ω(n) among residue classes. More formally, we sho...

متن کامل

A remark on the means of the number of divisors

‎We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$‎, ‎where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎Also‎, ‎we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.

متن کامل

On the Number of Subsets Relatively Prime to an Integer

A nonempty subset A of {1, 2, . . . , n} is said to be relatively prime if gcd(A) = 1. Nathanson [4] defined f(n) to be the number of relatively prime subsets of {1, 2, . . . , n} and, for k ≥ 1, fk(n) to be the number of relatively prime subsets of {1, 2, . . . , n} of cardinality k. Nathanson [4] defined Φ(n) to be the number of nonempty subsets A of the set {1, 2, . . . , n} such that gcd(A)...

متن کامل

an investigation of the impact of self monitoring on langauge teachers motivational practice and its effect on learners motivation

the central purpose of this study was to conduct a case study about the role of self monitoring in teacher’s use of motivational strategies. furthermore it focused on how these strategies affected students’ motivational behavior. although many studies have been done to investigate teachers’ motivational strategies use (cheng & d?rnyei, 2007; d?rnyei & csizer, 1998; green, 2001, guilloteaux & d?...

Prime divisors of some shifted products

We study prime divisors of various sequences of positive integers A(n) + 1, n = 1,...,N, such that the ratios a(n) = A(n)/A(n − 1) have some number-theoretic or combinatorial meaning. In the case a(n) = n, we obviously have A(n) = n!, for which several new results about prime divisors of n! + 1 have recently been obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1987

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-49-1-21-33